
Quantum Mechanics I
Week 5 (Solutions)

Spring Semester 2025

1 The Hellmann–Feynman theorem

A. Theorem Proof

Suppose a Hamiltonian Ĥ for a particular quantum system is a function of some parameter
λ. As a consequence, its eigenvalues En(λ) and eigenstates |ψn(λ)⟩ are also functions of
this parameter. The Hellman-Feynman Theorem states that

dEλ

dλ
=

〈
ψλ

∣∣∣∣∣dĤλ

dλ

∣∣∣∣∣ψλ

〉
. (1.1)

Prove this statement.

This proof employs the following two conditions:

Ĥλ|ψλ⟩ = Eλ|ψλ⟩, (1.2)

⟨ψλ|ψλ⟩ = 1 ⇒ d

dλ
⟨ψλ|ψλ⟩ = 0. (1.3)

The proof then follows through an application of the derivative product rule to the
expectation value of the Hamiltonian viewed as a function of λ:

dEλ

dλ
=

d

dλ
⟨ψλ|Ĥλ|ψλ⟩

=

〈
dψλ

dλ

∣∣∣∣∣Ĥλ

∣∣∣∣∣ψλ

〉
+

〈
ψλ

∣∣∣∣∣Ĥλ

∣∣∣∣∣dψλ

dλ

〉
+

〈
ψλ

∣∣∣∣∣dĤλ

dλ

∣∣∣∣∣ψλ

〉

= Eλ

〈
dψλ

dλ

∣∣∣∣∣ψλ

〉
+ Eλ

〈
ψλ

∣∣∣∣∣dψλ

dλ

〉
+

〈
ψλ

∣∣∣∣∣dĤλ

dλ

∣∣∣∣∣ψλ

〉

= Eλ
d

dλ
⟨ψλ|ψλ⟩+

〈
ψλ

∣∣∣∣∣dĤλ

dλ

∣∣∣∣∣ψλ

〉

=

〈
ψλ

∣∣∣∣∣dĤλ

dλ

∣∣∣∣∣ψλ

〉
.
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B. Application to a Two-Level System

Consider a two-state system with the following total Hamiltonian:

Ĥ =

(
g ω0 + g

ω0 + g −g

)
≡ Ĥ0 + gV̂ , V̂ =

(
1 1
1 −1

)
. (1.4)

(a) Compute the eigenvalues and eigenvectors of Ĥ0.
The eigenvalues and their respective eigenvectors are

E1 = ω0; E2 = −ω0; v1 =
1√
2

(
1
1

)
; v2 =

1√
2

(
1
−1

)
.

(b) We would like now to compute the first-order correction in energy δEi when the
perturbation V̂ is introduced, i.e.

Ei = E
(0)
i + δEi +O(g2) , (1.5)

where E(0)
i are the energies of the Hamiltonian Ĥ0. Compute the first-order variation

of the energies using the Hellmann-Feynman theorem.
The variation δEi = g dE1/dg|g=0 represents the first term in the Taylor expansion
of the energies aroung g = 0. By the H.-F. theorem, we have:

δE1 = gv1 · V v1 =
1

2
g
(
1 1

)(1 1
1 −1

)(
1
1

)
= g,

δE2 = gv2 · V v2 =
1

2
g
(
1 −1

)(1 1
1 −1

)(
1
−1

)
= −g.

Thus, the first-order corrected energies are E1 = E
(0)
1 + g and E2 = E

(0)
2 − g.

(c) Compute the exact eigenvalues by diagonalizing Ĥ and verify the result found in
the previous Question. Consider small g.
The exact eigenvalues are calculated from the characteristic equation (I is the
identity matrix)

0 = det(H − λI) = det

(
g − λ ω0 + g
ω0 + g −g − λ

)
= λ2 − ω2

0 − 2gω0 − 2g2

The roots are

λ1 =
√
ω2
0 + 2gω0 + 2g2; λ2 = −

√
ω2
0 + 2gω0 + 2g2

Expanding in a power series of g to first order, we get

λ1 ≃ ω0 + g; λ2 = −ω0 − g

in agreement with what was seen above.
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C. Application to Atoms in an Electric Field

The coupling of any system to an external, uniform and static electric field E is obtained
with an interaction term −d · E in the Hamiltonian, just as in the classical case,

Ĥ = Ĥ0 − d · E, d =
∑
a

eara , (1.6)

where the index a corresponds to the number of charges. The quantity d is your usual
dipole moment.

(a) Show that the average dipole moment of the system in the steady state |ψn⟩ can
be expressed through the variation of the energy En with respect to the external
electric field. Here, the state |ψn⟩ and the corresponding energy En are an eigenstate
and energy of the Hamiltonian Ĥ respectively. Hint: Use the Hellmann-Feynman
theorem.

The desired quantity is

D = ⟨ψn | d | ψn⟩ (1.7)

where |ψn⟩ is the eigenstate of H with energy En. If we consider E as a parameter,
the Hellmann-Feynman theorem tells us that

∂En

∂E
= ⟨ψn | ∂H

∂E
| ψn⟩ ≡ − ⟨ψn | d | ψn⟩ (1.8)

therefore

D = − ∂En

∂E
. (1.9)

(b) By using second-order perturbation theory (beyond of the scope of this course) we
find that the energies of a closed-shell atom in a weak electric field are of the form:

En = E0 +
α

2
E⃗2 , (1.10)

where α is a constant with the appropriate units. What is the average dipole moment
in this case?

In this case, the average value of the dipole is

D = αE (1.11)

in which we can recognize the definition of polarizability.
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2 Operators and Measurements
A two-level system is described by the Hamiltonian:

H = E0

(
1 0
0 −1

)
In this system, we consider the measurement of two observables described by the operators
A and B:

A =

(
0 −i
i 0

)
; B =

(
2 −

√
2i√

2i 1

)
.

(a) Verify that the eigenvalues of A are ±1 and find the corresponding eigenvectors.

The eigenvalue equation det(1λ− A) = 0 is written as λ2 − 1 = 0, and it has
solutions λ = ±1. The corresponding (normalized) eigenvectors are

|A; +1⟩ = 1√
2

(
1
i

)
, |A;−1⟩ = 1√

2

(
1
−i

)
. (2.1)

(The phase was chosen arbitrarily.)

(b) Find the eigenvalues and eigenvectors of B.

The characteristic equation for B has eigenvalues b1 = 3 and b2 = 0 with normalized
eigenvectors

|B; 3⟩ = 1√
3

(√
2
i

)
, |B; 0⟩ = 1√

3

(
i√
2

)
. (2.2)

(c) Are the observables A and B compatible? Are they conserved?

The observables do not commute with each other, i.e. [A,B] ̸= 0, and are therefore
not compatible. The simplest way to verify this is to write the observables in terms
of the Pauli matrices:

A = σy, B =
3

2
I +

1

2
σz +

√
2σy.

Hence
[A,B] = 1

2
[σy, σz] = i σx.

Similarly,
H = E0 σz,

so these observables also do not commute with H and are not conserved.

(d) Suppose a measurement of A is performed, yielding the result measure(A) = 1.
What would be the results and their respective probabilities if B were measured
immediately after measuring A?
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After measuring A, the system is in the state |A; +1⟩, so the probability of observing
the two possible values of B (namely 3 and 0) are:

P (A; 1 | B; 3) =
∣∣⟨B; 3 | A; 1⟩

∣∣2 = 3 + 2
√
2

6
≈ 0.97, (2.3)

P (A; 1 | B; 0) =
∣∣⟨B; 0 | A; 1⟩

∣∣2 = 3− 2
√
2

6
≈ 0.03 (2.4)

(e) The system is subjected to a second measurement of the observable A. What would
be the probability of finding the value A = 1 in the following cases?

i) Not measuring B and the measurement of A is performed immediately after
the first measurement.

ii) Not measuring B and the measurement of A is performed after a time t.

iii) A is measured after performing a measurement of B, obtaining the result b1
(the maximum eigenvalue of B)

i) The measurement of A immediately after gives the result 1.

ii) The state |A, 1⟩ is not an eigenstate of H. The eigenstates of H are the vectors:

|e1⟩ =
(
1
0

)
, |e2⟩ =

(
0
1

)
.

From the expression of |A, 1⟩, we have

|A, 1⟩ = 1√
2

(
|e1⟩+ i |e2⟩

)
= |A1⟩.

Thus, at time t

|A1, t⟩ = 1√
2

(
|e1⟩ e−iE0t/ℏ + i |e2⟩ e+iE0t/ℏ

)
.

The probability amplitude for the process is

⟨A1 | A1, t⟩ = 1

2

(
e−iE0t/ℏ + e+iE0t/ℏ

)
= cos

(E0t

ℏ

)
.

The corresponding probability is

P
(
A1(t) | A1

)
=
[
cos
(E0t

ℏ

)]2
.

iii) If the result of the measurement ofB gives b1 = 3, then the system is in the state
|B, 3⟩, independent of its previous state. Therefore, the (relative) probability
of obtaining the value A = 1 in an immediately subsequent measurement is

P (A1 | A1, B3) = |⟨A, 1 | B, 3⟩|2 = P (A1 | B3) =
1

6

(
3 + 2

√
2
)
.
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The term “relative” refers to the assumption that in the first measurement,
the result was b1 = 3. Logically, the probability of the entire sequence is
obtained by multiplying the probabilities in sequence (we write the probability
conditions explicitly to clarify the process):

P (A1 | B3) · P (B3 | A1) = 17

36
+

√
2

3
.

3 Two-Level Systems

A. The Bloch-sphere Representation

Figure 1: The Bloch sphere representation.

Show that all pure states |ψ⟩ of a two-level system |0⟩ , |1⟩ can be written as

|ψ⟩ = cos
θ

2
|0⟩+ sin

θ

2
eiϕ |1⟩ , (3.1)

where θ ∈ [0, π], ϕ ∈ [0, 2π[. This result shows that the three dimensional unit sphere
allows to represent any pure state of a two-level system (like a qubit, spin-1/2, photon
etc). The above representation of pure states in the unit sphere is called the Bloch sphere.
Recall that in Week 3, we defined the operator Ŝn⃗ as the projection of the spin operator
S⃗ along a unit vector n⃗ = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ. One of the eigenvectors was
precisely the state |ψ⟩.

Without loss of generality, we can write any state at two levels (considered alone) in the
form

|ψ⟩ = a|0⟩+ beiϕ|1⟩, (3.2)

with a and b positive reals such that a2 + b2 = 1 and ϕ ∈ [0, 2π[, since the global phase
doesn’t matter physically. We can therefore introduce a parameter θ ∈ [0, π] such that
a = cos θ

2
and b = sin θ

2
, hence the results. The angles θ and ϕ can be interpreted as the

polar and azimuth angles of the spherical coordinates, which provide a parametrization
of the unit sphere in three dimensions.
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We are therefore immediately convinced that a point in this unit sphere (Bloch sphere)
corresponds to one and only one state of the two-level system. In particular, the north
pole of the Bloch sphere corresponds to the state |0⟩, and the south pole to |1⟩.

B. A spin-1/2 in a Magnetic Field

We consider a spin-1/2 with a magnetic moment µ = −γS, where γ = |e|
m

, where |e| and
m are the charge and mass of an electron, respectively and S is the spin of the electron.
This particle is in a constant magnetic field

B0 =
ωx

γ
x̂+

ωy

γ
ŷ +

ωz

γ
ẑ . (3.3)

(a) Show that the time evolution operator for this spin is given by :

U(t, 0) = e−iMt, M =
1

ℏ
(ωxSx + ωySy + ωzSz) . (3.4)

Give the matrix representation of M in the Sz eigenbasis {|Sz;±⟩}.
The Hamiltonian of the system reads:

H = −µ ·B0 = −γS ·B0, (3.5)

The time evolution is dictated by the operator U(t) ≡ U(t, 0) = e−
i
ℏHt = e−iMt,

where

M =
H

ℏ
= −1

ℏ
(γS ·B0) =

1

ℏ
(Sxωx +Syωy +Szωz) =

1

2
(σxωx + σyωy + σzωz). (3.6)

In the eigenbasis of Sz (|0⟩, |1⟩), we have that

M =
1

2

(
ωz ωx − iωy

ωx + iωy −ωz

)
. (3.7)

The matrix representation of M , in the eigenbasis of Sz, is

M =
1

2

(
ωz ωx − iωy

ωx + iωy −ωz

)
. (3.8)

(b) Show that:

M2 =
1

4

(
ω2
x + ω2

y + ω2
z

)
1 =

(ω0

2

)2
1 , (3.9)

where ω0 = γ|B|.
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To obtain the above expression for M we have used that σ2
x = σ2

y = σ2
z = 12 and

{σi, σj} = 2δij12,

M2 =
1

4
(σxωx + σyωy + σzωz)

2 =
1

4
(ω2

x + ω2
y + ω2

z)12 =
ω2
0

4
. (3.10)

(c) Using your previous results, show that the time evolution operator can be written
as:

U(t, 0) = cos

(
ω0t

2

)
1 − 2i

ω0

sin

(
ω0t

2

)
M . (3.11)

The exponential of an operator is given by

e−iMt =
∞∑
k=0

(−iMt)k

k!
=

∞∑
k=0

(−iMt)2k

(2k)!
+

∞∑
k=0

(−iMt)2k+1

(2k + 1)!
. (3.12)

We have that

M2k = (M2)k =
(ω0

2

)2k
12, M2k+1 =

(ω0

2

)2k
M. (3.13)

and thus,

e−iMt = 12

∞∑
k=0

(−iω0

2
t)2k

(2k)!
+M

2

ω0

∞∑
k=0

(−iω0

2
t)2k+1

(2k + 1)!
(3.14)

= 12 cos
(ω0

2
t
)
− i

2

ω0

M sin
(ω0

2
t
)
. (3.15)

(d) We consider a spin in the initial state |ψ(0)⟩ = |Sz; +⟩. Find the time-evolved state
|ψ(t)⟩.
We apply the time-evolution operator on the initial state as follows:

|ψ(t)⟩ = U(t, 0) |ψ(0)⟩ =
[
cos

(
ω0t

2

)
1 − 2i

ω0

sin

(
ω0t

2

)
M

]
|Sz; +⟩ . (3.16)

The action of M on the eigenvector of Sz with positive eigenvalue gives:

M |Sz; +⟩ = ωz

2
|Sz; +⟩+ ωx + iωy

2
|Sz;−⟩ . (3.17)

Thus, the time-evolved state becomes:

|ψ(t)⟩ =
[
cos

(
ω0t

2

)
− i

ωz

ω0

sin

(
ω0t

2

)]
|Sz; +⟩ − i

(ωx + iωy)

ω0

sin

(
ω0t

2

)
|Sz;−⟩ .

(3.18)
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(e) Find the probabilities to find the system in either states |Sz; +⟩ for t > 0.

The probability to find the system in the state |Sz; +⟩ is:

P+(t) = | ⟨Sz; +|ψ(t)⟩ |2 = cos2
(ω0

2
t
)
+

(
ωz

ω0

)2

sin2
(ω0

2
t
)
. (3.19)

and may further be simplified in:

P+(t) = cos2
(ω0

2
t
)
+

(
ωz

ω0

)2

sin2
(ω0

2
t
)

= 1 + sin2
(ω0

2
t
)(ω2

z

ω2
0

− 1

)

= 1− sin2
(ω0

2
t
)(ω2

x + ω2
y

ω2
0

)
.

Note that the presence of the magnetic field determines the precession of the spin
around the direction of B0. Thus, it is clear that if S and B0 have the same direction,
there is no precession and P+(t) becomes 1.

For example, in the case where B0 is parallel to the z direction, we have H = 1
2
σzωz.

Therefore, P+ = 1 since ωx = ωy = 0.

4 Advanced Operator Algebra

A. Unitary Operators

A unitary operator U is an operator whose Adjoint is its inverse, i.e.

U †U = 1̂ = UU †

(a) Show that all eigenvalues λi of a Unitary operator are pure phases, λj = eiϕj .

Suppose |ϕu⟩ is an eigenfunction of U with eigenvalue u, i.e.

U |ϕu⟩ = u |ϕu⟩ . (4.1)

We thus have that

⟨Uϕu|Uϕu⟩ = ⟨uϕu|uϕu⟩ = |u|2 ⟨ϕu|ϕu⟩ (4.2)

On the other hand, since U is unitary, U †U = 1, we have

⟨Uϕu|Uϕu⟩ = ⟨ϕu|U †U |ϕu⟩ = ⟨ϕu|1|ϕu⟩ = ⟨ϕu|ϕu⟩ . (4.3)
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From our two last arguments, we find:

|u|2 ⟨ϕu|ϕu⟩ = ⟨ϕu|ϕu⟩ . (4.4)

Thus, unless ⟨ϕu|ϕu⟩ = 0, we must have that

|u|2 = 1 (4.5)

i.e., all eigenvalues u of a Unitary operator must be pure phases, u = eiθ.

(b) Can an operator be both Hermitian and unitary?

The condition for U to be Hermitian is that U † = U . The condition for U to be
Unitary is that U †U = 1. Thus the condition for an operator to be both Unitary
and Hermitian is that U2 = 1, i.e. the only Unitary operators, which are also
Hermitian, are those which square to one.

Note that can be easily seen from the eigenvalues: Hermitian implies the
eigenvalues are all real; Unitary implies the eigenvalues are all pure phases; the
only numbers which are both real and pure phases are ±1; thus the eigenvalues of
a Unitary Hermitian operator are all ±1 and square to one.

Therefore, a Unitary operator can be Hermitian, only if it squares to one.

(c) Suppose M is a Hermitian operator. Show that eiM is a Unitary operator.

Suppose M is Hermitian, M † = M . We would like to see that U = eiM is Unitary,
i.e. that U †U = 1. By definition of the exponential of an operator,

U = eiM =
∞∑
n=0

(iM)n

n!
(4.6)

Since M is Hermitian, iM is anti-Hermitian, i.e. (iM)† = −iM , so

U † =
∞∑
n=0

(−iM)n

n!
= e−iM (4.7)

Thus,
U †U = e−iMeiM = 1. (4.8)

(d) Show that the product of two unitary operators is also Unitary.

Suppose A and B are Unitary, A†A = 1 and B†B = 1, and let W = AB. Then

W † = (AB)† = B†A† ⇒ W †W = (B†A†)AB = B†(A†A)B = B†B = 1. (4.9)

So W = AB is Unitary.
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(e) Suppose U is a unitary operator, and v a state. Show that acting on v with U
preserves the norm of v.

The length of a vector v is defined as |v| =
√

⟨v|v⟩. Let us make the notation
|u⟩ = U |v⟩. The length of u is:

|u| =
√
⟨u|u⟩ =

√
⟨v|U †U |u⟩ =

√
⟨v|v⟩ = |v|. (4.10)

So unitary operators preserve the length of vectors.

(f) A space translation by L is represented by the following operator

T̂L = e−
i
ℏLp̂, T̂Lf(x) = f(x− L) ,

where p̂ is a Hermitian operator (in fact, this is the momentum operator). The
operator T̂L shifts the expectation value of the position by L. Verify that T̂L is a
unitary operator and demonstrate that

T̂ †
L = T̂−L .

Since p̂ is a Hermitian operator, the operator −L
ℏ p̂, being the multiplication of p̂ by

a real number, is Hermitian. Thus, from Question (c), we know that the operator

T̂L = ei(−
L
ℏ p̂) (4.11)

is unitary. Acting with T̂L on any function f(x), we find:

T̂−Lf(x) = f(x+ L) = ei
L
ℏ pf(x) =

(
e−i(L

ℏ p)
)†
f(x) = T̂ †

Lf(x). (4.12)

Since the above equation holds for any function f(x), we conclude that the first and
the last members are equal at the operator level, and thus

T̂−L = T̂ †
L. (4.13)

B. Anti-unitary Operators

Recall that an operator is Hermitian if it is equal to its own adjoint, Â† = Â. Henceforth,
let Â and B̂ be Hermitian operators, and define Ĉ = [Â, B̂].

(a) Show that Ĉ† = −Ĉ. Such an operator is called anti-Hermitian.

We show this by considering the Hermitian of the commutator:

C† =
(
[A,B]

)†
=
(
AB −BA

)†
= B†A† −A†B† = −

(
AB −BA) = −[A,B] = −C.

We have used the fact that both A,B are Hermitian operators.
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(b) Show that the eigenvalues of the anti-Hermitian operator Ĉ are all imaginary.

Consider the operator (iĈ):

(iĈ)† = −iĈ† = iĈ, (4.14)

which means that iĈ is Hermitian. As a result, eigenvalues of iĈ are real, so
eigenvalues of Ĉ must be purely imaginary.

(c) Suppose [K̂, Ĵ ] = −sĴ , where s is a real quantity and K̂ is Hermitian. Is Ĵ
Hermitian?

The operator Ĵ is not Hermitian, which is something that is mostly easily proven by
contradiction. Suppose we were to assume that Ĵ were Hermitian, so that Ĵ† = Ĵ .
Let us rewrite Ĵ as −1

s
[K̂, Ĵ ] and consider Ĵ†:

Ĵ† = −
(
1

s
[K̂, Ĵ ]

)†

= −1

s

(
K̂Ĵ − ĴK̂

)†
= −1

s
(Ĵ†K̂† − K̂†Ĵ†) =

1

s
(K̂Ĵ − ĴK̂),

where in the last equality we used the fact that K̂ is Hermitian and our assumption
that Ĵ is also Hermitian. The final expression is equal to +1

s
[K̂, Ĵ ] = −Ĵ . Thus,

our algebra implies that Ĵ† = −Ĵ , which contradicts our assumption of Ĵ† = Ĵ (i.e.,
our assumption that Ĵ is Hermitian). Since we have a contradiction, we are forced
to conclude that Ĵ is not Hermitian.

(d) Show that [K̂, Ĵ†] = +sĴ†.

Starting with [K̂, Ĵ ], we have

[K̂, Ĵ†] = [K̂†, Ĵ†] = K̂†Ĵ† − Ĵ†K̂† = (ĴK̂)† − (K̂Ĵ)†

= −(K̂Ĵ − ĴK̂)† = −[K̂, Ĵ ]† = −(−sĴ)† = sĴ†,

where in the first equality, we used the Hermiticity of K̂ to replace K̂ with K̂†. In
the penultimate equality, we used our definition of Ĵ , i.e., [K̂, Ĵ ] = −sĴ .

What we have, then, are two results (which really imply each other):

[K̂, Ĵ ] = −sĴ and [K̂, Ĵ†] = +sĴ†. (4.15)

(e) Suppose K̂φk = kφk. Show that (Ĵφk) is an eigenfunction of K̂ with eigenvalue
(k − s).

If K̂φk = kφk (i.e., φk is an eigenstate of K̂ with eigenvalue k), then the state (Ĵφk)
is also an eigenfunction of K̂ with eigenvalue (k − s), as we now show:

K̂(Ĵφk) = K̂Ĵφk = ([K̂, Ĵ ] + ĴK̂)φk = −sĴφk + kĴφk = (k − s)(Ĵφk). (4.16)
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(f) Show that (Ĵ†φk) is an eigenfunction of K̂ with eigenvalue (k + s).

Similarly, we have:

K̂(Ĵ†φk) = K̂Ĵ†φk = ([K̂, Ĵ†] + Ĵ†K̂)φk = +sĴ†φk + kĴ†φk = (k+ s)(Ĵ†φk). (68)

Remark: The algebraic structure explored in this problem is precisely analogous to the
one in the quantum harmonic oscillator, which we will encounter later in the course. The
Ĵ is the lowering operator that acts on an eigenstate of K̂ and gives a result that is directly
proportional to an eigenstate of K̂ with an eigenvalue that is lower than the eigenvalue
of the original eigenstate. The operator Ĵ† “raises” in an analogous way.

C. Baker-Campbell-Hausdorff formula

The Baker-Campbell-Hausdorff formula is a particularly useful formula which is commonly
used to conduct unitary transforms in quantum mechanics.

(a) Prove the Baker-Campbell-Hausdorff formula for a linear operator on Hilbert space,

eABe−A =
∞∑
k=0

1

k!
[A,B]k,

where [A,B]0 = B and [A,B]k = [A, [A,B]]k−1.

To prove this formula, we use the Taylor expansion of the exponential, as to find:

G = eABe−A =

(∑
n

An

n!

)
B

(∑
m

(−1)mAm

m!

)
=
∑
n,m

(−1)mAnBAm

n!m!
. (4.17)

We analyze G into its components based on the sum (n+m):

G = G0 +G1 +G2 + · · · . (4.18)

We may show the first few terms as follows (we use the notation (n,m)):

• (0, 0) : G0 = B

• (1, 0), (0, 1) : G1 = [A,B]

• (2, 0), (1, 1), (0, 2) : G2 =
1
2!
[A, [A,B]]

and so forth.

Thus, we can show:

eABe−A =
∞∑
k=0

1

k!
[A,B]k, (4.19)

where [A,B]0 = B and [A,B]k = [A, [A,B]]k−1.

Page 13 of 17



(b) For the case that [A, [A,B]] = [B, [A,B]] = 0 (the Heisenberg algebra or the creation
and annihilation operators of the harmonic oscillator – which we will encounter soon
– are examples), show, using the result from Question (a), that

eAeB = eA+B+ 1
2
[A,B].

Hint: Consider the operator g(s) = esAesB and take the derivative with respect to
s. Obtain a differential equation for g(s) and solve it. Set s = 1 to your final result.

For g(s) = esAesB, it follows that

dg

ds
=
(
A+ esABe−sA

)
g(s) = (A+B + s[A,B]) g(s), (4.20)

whose solution is

g(s) = es(A+B)+ s2

2
[A,B]. (4.21)

Taking s = 1 gives one of the special cases of the Baker–Campbell–Hausdorff formula
described above:

eAeB = eA+B+ 1
2
[A,B]. (4.22)

5 Which-Slit Information Destroys Interference
We would like to investigate through which slits the electrons pass. We decide to set up
a double-slit experiment and place test particles in front of slit A to detect the electrons
passing through this slit. The electron collides with these test particles, and this process
causes an uncertainty in the momentum ∆py.
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Figure 2: Modified apparatus, with test particles behind slit A. If an electron passes
through slit A, it will scatter with one of the test particles, after which both particles will
have some uncertainty in their momentum along the y direction, ∆py. Also shown is the
momentum for an unscattered electron. In the problem it has to be assumed that the
screen is located very far away from the double-slit aperture, so that the distance between
the two slits, d, is much smaller than the distance L between the plane of the two slits
and the detector screen.

(a) Let us consider first the case in which the electron is not scattered by the test
particles. In this case, find the angle corresponding to the first minimum of the
interference pattern.

The difference in path lengths, ∆L, from each slit to point P is given by ∆L = d sin θ.
The first minimum in the interference pattern, nearest the central peak, therefore
occurs for ∆L = (1/2)λ, where λ is the wavelength of the waves passing through
the slits, or

d sin θ =
1

2
λ , (5.1)

corresponding to an angle from the initial direction of propagation given by

sin θ =
λ

2d
. (5.2)

An electron’s associated wavelength is given by the de Broglie relation,

λ =
h

p
, (5.3)

where h is Planck’s constant and p is the electron’s momentum. Thus the minima
in the interference pattern will occur at

sin θ =
h

2pd
. (5.4)
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(b) Using your result from Question (a) and the de Broglie relation, show that at the
first minimum of the interference pattern, the y-component of the momentum of the
unscattered electron is:

py =
h

2d
, (5.5)

where h is the Planck’s constant.

An unscattered electron that was heading toward that position on the screen,
meanwhile, would have a y-component of its momentum given by py = p sin θ, or
sin θ = py

p
. Combining these expressions, we have

sin θ =
py
p

=
h

2pd
⇒ py =

h

2d
. (5.6)

(c) What should be the condition of the momentum and its uncertainty that guarantees
the preservation of the interference pattern?

The preservation of the interference pattern requires that the uncertainty in the
momentum after scattering, ∆py, remains much smaller than the py = h/(2d). In
fact, if ∆py was larger than h/(2d), the momentum uncertainty due to the collision
with the test particles would be enough to shift the momentum by an amount
comparable to the distance between the interference fringes. This would destroy the
interference pattern.

Thus, in order to preserve interference we have to require that:

∆py ≪ py =
h

2d
. (5.7)

(d) What should be the condition of the position and its uncertainty that guarantees
definite measurement of which-slit information?

Any definite measurement of which slit the electron passed through also required
∆y ≪ d.

(e) Using your results from Questions (c) and (d), show that

∆y∆py ≪
h

2
, (5.8)

which is a clear violation of the uncertainty principle! As a result, the inclusion of
test particles significantly affects the electron’s momentum, causing the minima of
the interference pattern to smear out and ultimately leading to the loss of
interference.

In order to measure the which-slit information AND not disrupt the characteristic
interference pattern, we would require (considering the conditions from the previous
two questions):

∆y∆py ≪ d

(
h

2d

)
=
h

2
. (5.9)
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This is a clear violation of the Heisenberg’s uncertainty principle!

The act of measuring through which slit the electron passed destroys the interference
pattern. An electron that encounters one of the test particles would necessarily
receive such a large “kick”, ∆py, that the minima of the interference pattern would
get smeared out, destroying the characteristic pattern of peaks and valleys. In fact,
if every electron were definitely measured to pass through either slit A or slit B, the
resulting detection pattern when both slits were open would revert to the sum of
the two single-slit distributions – all wavelike behavior would vanish.
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